If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-8t-4=0
a = 1; b = -8; c = -4;
Δ = b2-4ac
Δ = -82-4·1·(-4)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{5}}{2*1}=\frac{8-4\sqrt{5}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{5}}{2*1}=\frac{8+4\sqrt{5}}{2} $
| 8x^2=1-2x | | -4+x/8=2 | | -18=9/5c+32 | | (2y+6)^2=36 | | 8x-8=10x-28 | | -43=6(-6+4m)-7(1-7m) | | 8x2-5x-4=0 | | 2(5x+20)=2)6x+12) | | 4x=6x+2/3 | | 2x+x-10=4x-3 | | 24=18=2g | | 7×x+8=6×x+19 | | 2(2n+2)=9(8n+1)+5 | | -8(v-1)=-4v-28 | | 10+5=3(2x+2) | | 48=2.5x+2.5x+x+x+x | | 10x5=3(2x+2) | | -6y+14+y=32 | | 10x+10=3(2x+2) | | 4(x=7)-7x=2 | | x^2–5x–1=0 | | 4x=4x+2/3 | | 175=2x*4 | | x2–5x–1=0 | | 3t/4+7=4t-3 | | 41.89=9g+3.55 | | 12x+21-15x+3=30 | | 68=x-325/50 | | 2x+3/6x+1=1/2x | | 4x=8x+2/3 | | 40=3(7+x)+4x+5 | | 26.44=3s+3.52 |